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J .  Phys. A: Math. Gen. 19 (1986) 3607-3617. Printed in Great Britain 

On a Jaynes-Cummings type model with multiphoton 
transitions 

A S Shumovsky, E I Aliskenderov, Fam Le Kien and Nguyen Dinh Vinh 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head Post Office, 
Po Box 79, Moscow, USSR 

Received 7 February 1986 

Abstract. We present a quantum electrodynamic model, soluble in the dipole and rotating 
wave approximation, for a three-level atom interacting with a two-mode resonant radiation 
field through the multiphoton transition mechanism. Population dynamics and photon 
statistics in this Jaynes-Cummings type model are examined. 

1. Introduction 

The Jaynes-Cummings model (Jaynes and Cummings 1963) of a two-level atom 
interacting with a quantised single-mode radiation field is at the core of many problems 
in quantum optics, NMR and quantum electronics. The importance of this model lies 
in that if is perhaps the simplest solvable model that describes the essential physics of 
radiation-matter interaction. Recent studies of this model by Eberly et a1 (1981) and 
Knight and Radmore (1982) have revealed quantum collapse and revival which are 
clearly a manifestation of the role of quantum mechanics in the coherence and 
fluctuation properties of radiation-matter systems. In a series of papers Buck and 
Sukumar (1981a, b, 1984a, b) and Singh (1982) have proposed three exactly solvable 
generations of the Jaynes-Cummings model, one involving intensity dependent coup- 
ling, one involving multiphoton interaction between field and atom and the other 
involving the few-level structure of the atom. A generalised model describing a 
two-mode process in a three-level atom with one-photon transitions has been investi- 
gated by Li and Bei (1984) and Bogolubov et a1 (1984, 1985a, b, c, 1986). An excellent 
review of the dynamical theory of Jaynes-Cummings type models has recently been 
given by Yo0 and Eberly (1985). 

The possibility of a multiphoton transition, which proceeds via intermediate states, 
was first pointed out by Goeppert-Mayer (1931). Various multiphoton transition 
processes have been studied both theoretically and experimentally. Among them are 
two-photon and more general multiphoton lasers (McNeil and Walls 1975, Sczaniecky 
1980, Gibson and Key 1980, Sharma and Brescansin 1981, Reid et a1 1981, Zubairy 
1982, Wang and Haken 1984a, b), two-photon decay (Tung et a1 1984, Florescu 1984), 
multiphoton absorption and emission in a two-level atomic system (Shen 1967, Zubairy 
and Yeh 1980) and Raman and hyper-Raman processes (Simann 1978, Sainz de 10s 
Terreros et a1 1985). 

We wish to present in this paper a rigorous and fully quantum mechanical treatment 
of multiphoton two-mode processes in a three-level atom on the basis of an exactly 
solvable Jaynes-Cummings type mode!. 
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In 5 2 we describe the model. Section 3 contains derivations of general explicit 
expressions for the time dependence of the level population and photon number 
operators. In 0 4 we study photon statistics. Section 5 gives a consideration of the 
quantum dressed states and transition probabilities. In 0 6 we summarise the results. 

2. Description of the model 

We consider a three-level atom being at rest in a lossless cavity and interacting with 
a resonant quantised two-mode radiation field. The energy operator for the atom is 

3 
H A =  hRjRjj .  

j =  1 

Here the operator Rjj=lJ) ( j l  describes the population of level j and haj is the 
corresponding level energy. The field Hamiltonian is 

HF= hw,a:a,. 
a = l  

The photon annihilation and creation operators aar a: (a = 1,2) describe mode a of 
the quantised radiation field in the cavity. The w, are the mode frequencies. Let the 
upper level 3 be coupled with the level 1 (level 2) due to the interaction with the field 
in mode 1 (mode 2) via a ml photon ( m 2  photon) transition; see figure 1 in which the 
energy level structure and transition scheme are outlined for the case m, = 3, m2 = 1. 
The corresponding multiphoton resonance conditions 

R, - fl, = maw, (a = 1,2) (3) 

are assumed to occur. As is well known, the atom-field interaction for a multiphoton 
process may be described by the effective Hamiltonian where a summation over 
intermediate states is implicit (Shen 1967, Walls 1971). In the case of the three-level 
two-mode system considered here the effective Hamiltonian in the electric dipole and 
rotating wave approximations takes the form 

Here the operator Rij = li)(jl describes the atomic transition from level i to level i 
( i  Zj). The mode a -atom coupling constant g, 

I 
I 
I 

is proportional to ~ ( " ' a ) ,  the dipole 

Figure 1. Energy level structure and transition scheme of the system considered in the 
particular case m, = 3, m2 = 1. 
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matrix element for the mu photon transition between levels 3 and a. The operators 
R, = l i ) ( j l ,  ( i , j  = 1,2,3) ,  obey the relations: 

RijRkl = R , J ,  ( s a )  

[ R,, R k l l  = RiISkj - RkjSil (5b) 
3 c R i , =  1. 

, = I  

Thus the full model Hamiltonian of the 'atom-field' system is 

Note that the case ml = m, = 1 has been considered by Bogolubov et a1 (1984, 1985a, 
b, c, 1986). In the special case when the second mode is excluded from consideration, 
i.e. when g , = O ,  we can obtain from the Hamiltonian (6) the case examined by Buck 
and Sukumar (1981b, 1984b) and Singh (1982). 

3. Time-dependent level population and photon number operators 

3.1. Equations of motion 

Starting from the Hamiltonian (6) we write down the Heisenberg equations for various 
operators in the usual way, i.e. 6 = (i/ h ) [ H ,  e]. First of all we define for convenience 
the subsidiary operators 

A ,  = i( R,,a? - Ra3a;"'-). (7)  

Then the Heisenberg equations for the level population operators R,, and the photon 
number operators Nu = a:a, (U = 1,2) are quickly established: 

k , ( t )  = g,A,(t) (8a)  

E j , ( t )  = m,g,A,(t). ( 8 b )  

From these equations it follows that 

N ,  ( t )  - moRaa ( t )  = constant = Mu (9) 

where Ma are constants of motion. 
By using relations ( 5 )  the Heisenberg equations for A,  are found to be 

where 

B = R21arla:m2+ Rl2a:"'la?2. 

The operator B obeys the equation of motion 



3610 A S Shumousky er a1 

Equations (8a), (10) and (12) form a closed system of linear equations that has 
the following integral of motion: 

g,g,B( f )  - A:R2’( r )  - A:Rll( r )  = constant = K .  (13) 
Here the notation 

has been introduced. 

account equations (10) and the constant of motion (13) we then obtain 
Let us now differentiate each of equations ( 8 a )  with respect to time. Taking into 

~ , , ( t ) + ( 4 A ~ + A : ) R , , ( r ) + 3 A : R 2 2 ( r )  =2A:- K 

~i,,(t)+(4A:+h:)R22(t) +3A:RI1(t) = 2A;- K .  
(15) 

Note that equations (15) are the same as the equations obtained previously in the 
paper of Bogolubov er a1 (1984) for the case m, = m2 = 1. One can consider these 
second-order differential equations as a system of equations for bounded quantum 
oscillators (Elgin 1980) generating Rabi non-linear oscillations of level populations 
and photon numbers (Allen and Eberly 1975) in our model. The depcndence of (15) 
upon the numbers of multiple photons per atomic transition m, and m2 is included in 
the expressions of A l ,  A 2  and K only. 

The solutions of the system (15) can easily be found and represented in the form 
(Bogolubov er al 1984) 
RIl ( t )  =  COS A t  - 1 ) + P  sin At+A:[u(cos 2At- 1)+  U sin 2At] + R,,(O) 

R22(f )=  -p(cos At-l)-p sinAt+A~[u(cos2At-1)+usin2Ar]+R2,(0) 
where the operator 

(16) 

describes the Rabi oscillation frequencies. The ‘amplitude operators’ p, P,  U, U are 
defined by the initial conditions as follows: 

p = {A ’[ A :RI 1(0) - A:R22(O)] + [A: - A:] K }/A 

u ={A2[1 - 2 R 3 , ( 0 ) ] +  K}/(2A4) 
(18) 

U = [g1A,(O)+g2A2(0)I/(2A3) 
P = [A:giAm - A:g2A2(0)1/A3. 

By using the conservation laws ( 5 c )  and (9) together with equations (16) we can obtain 
R33(t)=-A2[u(cos2At-1)+usin2At]+R33(0) 

N2(f)= m2{-p(cos Ar-l)-P sinAt+A:[u(cos2Ar-l)+~ sin2Ar]}+N2(0). 
Thus we have found the solutions of the equations of motion for the level population 

and photon number operators in the Heisenberg picture. Since the operators M2 and 
the operators A, and A are diagonal in the space of the basis states, we can use solutions 
(16) and (19) as conventional means to find the time dependence of the level populations 
and photon numbers. By using these solutions we can also find the statistical charac- 
teristics of the photons in the system (see Bogolubov er a1 1985b and 9 4). 

NI( t )  = m,{p(cos A t  - 1) + P sin A t  + A:[  COS 2At - 1) + U sin 2 A t ] }  + N,(O) (19) 
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3.2. Time evolution operator 

We denote the free Hamiltonian of the atom and field by H,: 

Ho= H A +  HF. 

Then the full Hamiltonian (6) can be written as 

H = H0-C H A F .  

It is easily shown that both Ho and H A F  are constants of motion, i.e. 

[ H, HO1 = [ H, HAFl = [ HO 3 HAFl = 

This allows the time evolution operator U ( ? )  to be written as 

U(t)=exp(- iHt/h)  =exp(-iHot/h) exp(-iHA,t/h) =exp(-iHot/h)Uint(t)  

where 

U,,,( f )  = exp(-iHAFt/ h )  

is the time evolution operator in the interaction picture. 
By using the identities 

N,! 
( N , - m ) !  

( N a + m ) !  
Nu ! 

a:"'az = 

aza;"' = 

and the relations ( s a )  we can easily show that 

( H A F /  h ) 2  = K + A ' HAFK = 0 

where the constant operators K and A have been defined in the previous subsection 
by equations (13) and (17), respectively. From equations (26) it follows that for an 
integer number n 3 1 

Hence, it is easy to express the time evolution operators Uint(t) and U ( ? )  in the form 

U ( t )  =exp(-iHot/h)Uint(t). (28b) 
The time evolution of any operator is now determined by applying the transforma- 

tion (28) to its value at the initial time t = 0 .  In particular, the density operator p ( t )  
of the system 'atom-field' in the Schrodinger picture will be given by 

P ( t )  = U(t)p(O)U+(t)  (29) 
in terms of its value at time t = 0. The density matrix pF( t )  of the radiation field and 
the probability P( n , ,  n2 ; t )  of finding n ,  photons in mode 1 and n2 photons in mode 
2 are found from equation (29) to be 

P d t )  = y U(t)p(O) U+(t)l  
(30) 

P ( n l ,  n 2 ;  t ) = ( n 2 ,  nllpF(t)lnl, n2). 
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Using equations (28)-(30) we can examine photon statistics for a given initial state of 
the system in the manner of Singh (1982). 

On the other hand, the time evolution of the operator 6 in the Heisenberg picture 
is given by 

e( t )  = U+( t ) eU(  t). (31) 

Using equations (28) and (31) we can quickly come to the same equations (16)-(19) 
and examine the time behaviour of the level populations and photon numbers for any 
initial state of the system. 

4. Photon statistics 

Let us introduce the following operators of the characteristic function of photon 
distribution: 

x ( , e2) = exp[i& N1 ( t ) + i 1 2 W  t)I. (32) 
Using the conservation laws (9) we find 

Denote by p ( 0 )  the density operator describing an initial state of the 'atom-field' 
system. Then the characteristic function (x(  5, , t2)) is defined as 

(A51 9 52)) = Tr x(51, 5 Z M O ) .  (34) 
It is connected to the photon distribution function P ( n l ,  n,; t )  by the relation 

which allows us to get the latter if the former is known. 
Once the characteristic and photon distribution functions are known, it is easy to 

find the statistical moments of photon number ( N z (  t ) )  and the correlations of modes 
(Pi!( t ) N : (  t ) )  using the relations 

Equations (33)-(36) together with equations (16) allow us to discuss photon 
statistics for a given initial state of the system. A detailed consideration of this problem 
will be given below. 

We first assume that the atom is initially on a definite level i, i.e. 

p(0)  = li)(il@pF (37) 
where the density matrix pF describes the initial state of the field. Then, by using 
equations (33), (16) and (37) the characteristic function (34) is found to be 

(~(51 ,52) )=  1 P ( n 1 ,  n2) exp[i~l(n~-mlS,i)+i52(n2-m2~2i)I{[ex~(ihml)-1I 
nl"2 

xR,(i ,  n,, n 2 ;  t)+[exp(i52m,)-lIR,(i, n1, n2; t )+ l ) .  (38) 
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Here P ( n l ,  n2)  is the initial distribution of photon numbers 

The functions R,(i, n,, n,; t )  in equation (38) are determined as 
RI( (  n,, n 2 ;  t )  = -2p(i ,  n,, n2) sin2[A(i, n,, n2)t/2] 

R2( i ,n , ,n2 ;  t ) = 2 p ( i , n 1 ,  n2)sin2[A(i,n,,n2)t/2] 

P(n1, n2) = ( n 2 ,  nllPFIn1, n2). 

-2A:(i,n,, n2)u(i, n,,n,)sin2A(i, n , , n 2 ) t + S l i  

-2A:(i, n,, n2)u(i, n,, n2)  sin2A(i, n,, n 2 ) t + S Z i  

where 

3613 

(39) 

+ P(n,+ m l S l i ,  n2+ m2S2i)R3(i, n l +  m,S,, ,  n2+ m2tjZi; t )  (42) 

R 3 ( i , n , , n 2 ;  r ) = 2 A 2 ( i , n l , n 2 ) u ( i , n , , n 2 ) s i n 2 A ( i , n l , n 2 ) t + 6 3 i .  (43) 

where 

The statistical moments of photon number and the correlations of modes are found 
from equations (36) and (38) to be 



3614 A S Shumovsky et a1 

Note that in the case i = 1, m, = m2 = 1 equations (45) reduce to the results obtained 
by Bogolubov er al (1985b). Equation (42) for the distribution function of photon 
numbers can easily be found by other ways using either the time evolution operators 
(28) and equations (30) in the Schrodinger picture or the dressed state formalism (see 
0 5 ) .  With the aid of equations (42), (44) and (45) we can examine the time behaviour 
of various photon statistical characteristics, mean photon numbers and mean atomic 
level populations (Bogolubov 1985c, 1986). In particular, interesting effects such as 
quantum collapse and revival (Eberly et a1 1981, Knight and Radmore 1982, Bogolubov 
et al1986), quantum chaos (Graham and Hohnerbach 1984a, b), and photon antibunch- 
ing (Bogolubov er al 198%) in exactly soluble models can be investigated. 

5. Quantum dressed states and transition probabilities 

We represent an eigenstate vector of the free Hamiltonian Ho by ( i ;  n, , n2), where I i )  
is an atomic eigenstate vector corresponding to level i and In, , n,) denotes a Fock state 
with n, photons in mode 1 and n2 photons in mode 2. This vector describes the 
so-called undressed state of the system (Haroche 1971, Whitley and Stroud 1976, 
Radmore and Knight 1982). The eigenstates of the full Hamiltonian H are easily 
found by solving the stationary Schrodinger equation 

H+ = E+. (46) 
Their expressions in terms of the undressed states I i ;  n,, n2) are given by 

andalsoby+,;,-,,,=Il; G I ,  n 2 ) w i t h n l , ~ m , - 1 a n d ~ 2 ; n l , ~ z = ( 2 ;  n,, i 2 ) w i t h 6 , ~ m 2 - 1 .  
Here for convenience we have put 

The eigenenergies E v;nl,nz( Y = 0, *, 1,2) of the full Hamiltonian H that correspond to 
the eigenstates I + y ; n 1 , n 2 )  are found to be 

and 
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Thus the spectrum of the Hamiltonian H consists of a lattice of triplets of closely 
spaced eigenstates $s;nl,n2(s = 0, k) and two sets of equally spaced undressed states 
11; n”, , n2) with n”l s m ,  - 1 and 12; n, , n’2) with 6, S m2 - 1. Each triplet is characterised 
by a pair of indices (n, , n 2 )  that indicate that those triplet states are linear combinations 
of the three degenerate states 11; n, + m , ,  n2>, 12; n,, n2+ m2) and 13; n ~ ,  n~), see (33). 
The energy splittings *thA (n,, n2)  within the triplet (n, , n2)  are of course due to the 
coupling of the atom to the field and are referred to as the resonant Stark effect. The 
triplet eigenstates $ s ; n l , n 2 ( s  = 0, k) are called quantum dressed states of the system 
(Haroche 1971, Whitley and Stroud 1976, Radmore and Knight 1982, Yo0 and Eberly 
1985). It is interesting to note that the dressed states $o;nl,n2 (see the last equation in 
(47)) are the coherent superpositions of only the undressed states 11; n, + m , ,  n2) and 
12; n, , n2 + m2) but not 13; n, , n2).  The existence of such dressed states uncoupled with 
the upper level 3 plays the important role in the mechanism of the population trapping 
effect (Radmore and Knight 1982, 1984, Dalton and Knight 1982, Yo0 and Eberly 
1985) due to which the decay channels in multiphoton excitation can be turned off. 

We now proceed to calculate the probabilities for the multiphoton transitions of 
the atom. Let us denote by p(t) the wavefunction of the total system ‘atom+field’ in 
the Schrodinger picture. Then the probability of finding the atom on its j th  level at 
time t as a result of the transition i + j  initiated by n, photons in mode 1 and n2 
photons in mode 2 of the field is defined by the formula 
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where the functions Rj( i, n, , n 2 ;  t )  have been defined by equations (40) and (43). 
Equation (54) implies that the transition probability P( t ;  i + j )  is equal to the population 
of level j under the initial state (52). Using equation (54) and the detailed balance 
principle, under the initial condition (37) we can easily obtain the same equation (42) 
for the photon distribution function P( n,, n2 ; t ) .  

6. Summary 

In this paper we have presented and studied a soluble Jaynes-Cummings type model. 
The model considered consists of a lambda configuration three-level atom interacting 
with a two-mode resonant radiation field through the multiphoton transition mechan- 
ism. The general explicit expressions for the time-dependent level population and 
photon number operators have been derived in various ways using either equations of 
motion or time evolution operators. The quantum electrodynamic expression of Rabi 
oscillation frequencies has been obtained. Photon statistics in the model has been 
studied. Expressions for the photon distribution, characteristic function, mean photon 
numbers, statistical moments and correlations of photon numbers in the modes are 
presented for various initial conditions. The quantum dressed eigenstates and the 
energy spectrum have been found. The probabilities for multiphoton transitions from 
one level to another level of the atom have been calculated. Application of the model 
to the study of multiphoton two-model lasers will be discussed in a future work. 
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